Source code for camcops_server.tasks.panss

"""
camcops_server/tasks/panss.py

===============================================================================

    Copyright (C) 2012, University of Cambridge, Department of Psychiatry.
    Created by Rudolf Cardinal (rnc1001@cam.ac.uk).

    This file is part of CamCOPS.

    CamCOPS is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    CamCOPS is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with CamCOPS. If not, see <https://www.gnu.org/licenses/>.

===============================================================================

"""

from typing import Any, Dict, List, Tuple, Type

from cardinal_pythonlib.stringfunc import strseq
from sqlalchemy.ext.declarative import DeclarativeMeta
from sqlalchemy.sql.sqltypes import Integer

from camcops_server.cc_modules.cc_constants import (
    CssClass,
    DATA_COLLECTION_ONLY_DIV,
)
from camcops_server.cc_modules.cc_ctvinfo import CTV_INCOMPLETE, CtvInfo
from camcops_server.cc_modules.cc_db import add_multiple_columns
from camcops_server.cc_modules.cc_html import tr_qa
from camcops_server.cc_modules.cc_request import CamcopsRequest
from camcops_server.cc_modules.cc_snomed import SnomedExpression, SnomedLookup
from camcops_server.cc_modules.cc_summaryelement import SummaryElement
from camcops_server.cc_modules.cc_task import (
    get_from_dict,
    Task,
    TaskHasClinicianMixin,
    TaskHasPatientMixin,
)
from camcops_server.cc_modules.cc_text import SS
from camcops_server.cc_modules.cc_trackerhelpers import TrackerInfo


# =============================================================================
# PANSS
# =============================================================================


class PanssMetaclass(DeclarativeMeta):
    # noinspection PyInitNewSignature
    def __init__(
        cls: Type["Panss"],
        name: str,
        bases: Tuple[Type, ...],
        classdict: Dict[str, Any],
    ) -> None:
        add_multiple_columns(
            cls,
            "p",
            1,
            cls.NUM_P,
            minimum=1,
            maximum=7,
            comment_fmt="P{n}: {s} (1 absent - 7 extreme)",
            comment_strings=[
                "delusions",
                "conceptual disorganisation",
                "hallucinatory behaviour",
                "excitement",
                "grandiosity",
                "suspiciousness/persecution",
                "hostility",
            ],
        )
        add_multiple_columns(
            cls,
            "n",
            1,
            cls.NUM_N,
            minimum=1,
            maximum=7,
            comment_fmt="N{n}: {s} (1 absent - 7 extreme)",
            comment_strings=[
                "blunted affect",
                "emotional withdrawal",
                "poor rapport",
                "passive/apathetic social withdrawal",
                "difficulty in abstract thinking",
                "lack of spontaneity/conversation flow",
                "stereotyped thinking",
            ],
        )
        add_multiple_columns(
            cls,
            "g",
            1,
            cls.NUM_G,
            minimum=1,
            maximum=7,
            comment_fmt="G{n}: {s} (1 absent - 7 extreme)",
            comment_strings=[
                "somatic concern",
                "anxiety",
                "guilt feelings",
                "tension",
                "mannerisms/posturing",
                "depression",
                "motor retardation",
                "uncooperativeness",
                "unusual thought content",
                "disorientation",
                "poor attention",
                "lack of judgement/insight",
                "disturbance of volition",
                "poor impulse control",
                "preoccupation",
                "active social avoidance",
            ],
        )
        super().__init__(name, bases, classdict)


[docs]class Panss( TaskHasPatientMixin, TaskHasClinicianMixin, Task, metaclass=PanssMetaclass ): """ Server implementation of the PANSS task. """ __tablename__ = "panss" shortname = "PANSS" provides_trackers = True NUM_P = 7 NUM_N = 7 NUM_G = 16 P_FIELDS = strseq("p", 1, NUM_P) N_FIELDS = strseq("n", 1, NUM_N) G_FIELDS = strseq("g", 1, NUM_G) TASK_FIELDS = P_FIELDS + N_FIELDS + G_FIELDS MIN_P = 1 * NUM_P MAX_P = 7 * NUM_P MIN_N = 1 * NUM_N MAX_N = 7 * NUM_N MIN_G = 1 * NUM_G MAX_G = 7 * NUM_G MIN_TOTAL = MIN_P + MIN_N + MIN_G MAX_TOTAL = MAX_P + MAX_N + MAX_G MIN_P_MINUS_N = MIN_P - MAX_N MAX_P_MINUS_N = MAX_P - MIN_N
[docs] @staticmethod def longname(req: "CamcopsRequest") -> str: _ = req.gettext return _("Positive and Negative Syndrome Scale")
[docs] def get_trackers(self, req: CamcopsRequest) -> List[TrackerInfo]: return [ TrackerInfo( value=self.total_score(), plot_label="PANSS total score", axis_label=f"Total score ({self.MIN_TOTAL}-{self.MAX_TOTAL})", axis_min=self.MIN_TOTAL - 0.5, axis_max=self.MAX_TOTAL + 0.5, ), TrackerInfo( value=self.score_p(), plot_label="PANSS P score", axis_label=f"P score ({self.MIN_P}-{self.MAX_P})", axis_min=self.MIN_P - 0.5, axis_max=self.MAX_P + 0.5, ), TrackerInfo( value=self.score_n(), plot_label="PANSS N score", axis_label=f"N score ({self.MIN_N}-{self.MAX_N})", axis_min=self.MIN_N - 0.5, axis_max=self.MAX_N + 0.5, ), TrackerInfo( value=self.score_g(), plot_label="PANSS G score", axis_label=f"G score ({self.MIN_G}-{self.MAX_G})", axis_min=self.MIN_G - 0.5, axis_max=self.MAX_G + 0.5, ), TrackerInfo( value=self.composite(), plot_label=f"PANSS composite score " f"({self.MIN_P_MINUS_N} to {self.MAX_P_MINUS_N})", axis_label="P - N", ), ]
[docs] def get_clinical_text(self, req: CamcopsRequest) -> List[CtvInfo]: if not self.is_complete(): return CTV_INCOMPLETE return [ CtvInfo( content=( f"PANSS total score {self.total_score()} " f"(P {self.score_p()}, " f"N {self.score_n()}, " f"G {self.score_g()}, " f"composite P–N {self.composite()})" ) ) ]
[docs] def get_summaries(self, req: CamcopsRequest) -> List[SummaryElement]: return self.standard_task_summary_fields() + [ SummaryElement( name="total", coltype=Integer(), value=self.total_score(), comment=f"Total score ({self.MIN_TOTAL}-{self.MAX_TOTAL})", ), SummaryElement( name="p", coltype=Integer(), value=self.score_p(), comment=f"Positive symptom (P) score ({self.MIN_P}-{self.MAX_P})", # noqa ), SummaryElement( name="n", coltype=Integer(), value=self.score_n(), comment=f"Negative symptom (N) score ({self.MIN_N}-{self.MAX_N})", # noqa ), SummaryElement( name="g", coltype=Integer(), value=self.score_g(), comment=f"General symptom (G) score ({self.MIN_G}-{self.MAX_G})", # noqa ), SummaryElement( name="composite", coltype=Integer(), value=self.composite(), comment=f"Composite score (P - N) ({self.MIN_P_MINUS_N} " f"to {self.MAX_P_MINUS_N})", ), ]
[docs] def is_complete(self) -> bool: return ( self.all_fields_not_none(self.TASK_FIELDS) and self.field_contents_valid() )
def total_score(self) -> int: return self.sum_fields(self.TASK_FIELDS) def score_p(self) -> int: return self.sum_fields(self.P_FIELDS) def score_n(self) -> int: return self.sum_fields(self.N_FIELDS) def score_g(self) -> int: return self.sum_fields(self.G_FIELDS) def composite(self) -> int: return self.score_p() - self.score_n()
[docs] def get_task_html(self, req: CamcopsRequest) -> str: p = self.score_p() n = self.score_n() g = self.score_g() composite = self.composite() total = p + n + g answers = { None: None, 1: self.wxstring(req, "option1"), 2: self.wxstring(req, "option2"), 3: self.wxstring(req, "option3"), 4: self.wxstring(req, "option4"), 5: self.wxstring(req, "option5"), 6: self.wxstring(req, "option6"), 7: self.wxstring(req, "option7"), } q_a = "" for q in self.TASK_FIELDS: q_a += tr_qa( self.wxstring(req, "" + q + "_s"), get_from_dict(answers, getattr(self, q)), ) h = """ <div class="{CssClass.SUMMARY}"> <table class="{CssClass.SUMMARY}"> {tr_is_complete} {total_score} {p} {n} {g} {composite} </table> </div> <table class="{CssClass.TASKDETAIL}"> <tr> <th width="40%">Question</th> <th width="60%">Answer</th> </tr> {q_a} </table> {DATA_COLLECTION_ONLY_DIV} """.format( CssClass=CssClass, tr_is_complete=self.get_is_complete_tr(req), total_score=tr_qa( f"{req.sstring(SS.TOTAL_SCORE)} " f"({self.MIN_TOTAL}{self.MAX_TOTAL})", total, ), p=tr_qa( f"{self.wxstring(req, 'p')} ({self.MIN_P}{self.MAX_P})", p ), n=tr_qa( f"{self.wxstring(req, 'n')} ({self.MIN_N}{self.MAX_N})", n ), g=tr_qa( f"{self.wxstring(req, 'g')} ({self.MIN_G}{self.MAX_G})", g ), composite=tr_qa( f"{self.wxstring(req, 'composite')} " f"({self.MIN_P_MINUS_N}{self.MAX_P_MINUS_N})", composite, ), q_a=q_a, DATA_COLLECTION_ONLY_DIV=DATA_COLLECTION_ONLY_DIV, ) return h
[docs] def get_snomed_codes(self, req: CamcopsRequest) -> List[SnomedExpression]: if not self.is_complete(): return [] return [SnomedExpression(req.snomed(SnomedLookup.PANSS_SCALE))]